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Focus on

• Abstractive opinion summarization 

• Latent models (Bayesian ML methods) 

• Variational inference
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Text Summarization
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Why summarization
• The amount of text documents available online is 

enormous 

• Summarization useful for: 

• Faster information consumption for the user

• Faster decision making for the user

• Downstream utilization (analysis)
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Applications
• Summarize a 100-page book to 10 pages 

• Get an overview of a specific event based on 
recent news articles 

• Condense a wikipedia article to a short 
paragraph based on a query

• Get a summary of opinions based on user review
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Opinion 
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Extractive summarizers
• Commonly used for the task (Ganesa et. al, 2010; 

Angelidis and Lapata, 2018; Isonuma et al., 2019) 

• Mostly unsupervised or weakly-supervised

• Select summarizing input fragments

• Concatenated to form a summary 

• Can be incoherent and contain unimportant 
details
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Abstractive summarizers

• Based on the encoder-decoder architecture

• Generate text (Paulus et al., 2017; See et al., 2017; 
Liu et al., 2018) 

• Can use a rich vocabulary of words 

• Can compress and fuse input fragments
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Abstractive summarizers
• Next, we’re going to take a look at models for abstractive 

opinion summarization 

• MeanSum (Chu and Liu, 2019) 

• Copycat (Bražinskas et al., ACL 2020) 

• FewSum (Bražinskas et al., EMNLP 2020) 

• Each alleviates the annotated data scarcity in its own 
way 

• Generate consensus summaries
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Unsupervised Opinion Summarization 
as Copycat-Review Generation 

Arthur Bražinskas, Mirella Lapata, Ivan Titov 
ACL 2020
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Approach

• Unsupervised latent model (continuous variables) 

• Learns latent semantic representations of 
products and individual reviews 

• Generates summaries from ‘summarizing’ latent 
representations 
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Conditional LM

• Formulate a conditional language model (CLM) 

• Predicts a review conditioned on the other reviews 
of a product (leave-one-out) 

• Intuitively similar to the pseudolikelihood 
estimation (Besag, 1975)
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Leave-one-out
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Novelty reduction

• Model is trained to predict reviews 

• Summaries are different from reviews in content 

• Summaries do not have novel content 

• Control the amount of ‘novelty’ via latent variables
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Model training

Variational Auto-encoders (Kingma and Welling, 
2013) via differentiable sampling
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Summary generation

• Use mean values of the latent variables to limit 
novelty 

• Show that the generator maps them to 
summarizing reviews
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Summary generation
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Summary generation
1. Infer the mean representation of the product: 

2. Infer the mean representation of the review:

c⇤ = Ec⇠q�(c|r1:N )[c]
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Summary generation
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1. Infer the mean representation of the product: 

2. Infer the mean representation of the review:

3. Generate the summarizing review:

r⇤ = argmax
r

p✓(r|z⇤, r1:N )
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Example Summary
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Summary

This restaurant is a hidden gem in

Toronto. The food is delicious, and the

service is impeccable. Highly recommend

for anyone who likes French bistro.

Reviews

We got the steak frites and the chicken

frites both of which were very good ...

Great service ... || I really love this place

... Côte de Boeuf ... A Jewel in the

big city ... || French jewel of Spadina

and Adelaide , Jules ... They are su-

per accommodating ... moules and frites

are delicious ... || Food came with tons

of greens and fries along with my main

course , thumbs uppp ... || Chef has a

very cool and fun attitude ... || Great lit-

tle French Bistro spot ... Go if you want

French bistro food classics ... || Great

place ... the steak frites and it was amaz-

ing ... Best Steak Frites ... in Downtown

Toronto ... || Favourite french spot in the

city ... crème brule for dessert
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ROUGE

• The status-quo metric (Lin, 2004) 

• N-gram overlap between the reference and 
hypothesis summary
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ROUGE-N
• Recall: 

• Precision:  

• F1: 
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ROUGE-N
• Recall: 

• Precision:  

• F1: 
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ROUGE-L

• Based on the longest common subsequence 

• Gaps are allowed 

• The most important sub-metric in summarization 

• Correlated with fluency (harder for extractive 
systems to score highly)
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Baselines

• Lead: leading sentences in each review used as a 
summary 

• MeanSum (Chu and Liu, 2019) is an encoder-
decoder unsupervised abstractive summarizer
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Results on Amazon
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Results on Amazon
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Pitfalls

• The model is never exposed to the actual 
summaries 

• Can produce fragments that are: 

• Written in the informal writing style  

• Not all details are important
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Example summary

These are the tights I’ve ever worn. They fit well and 
are comfortable to wear. I wish they were a little bit 
thicker, but I’m sure they will last a long time. 
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Example summary
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Few-Shot Learning for Opinion 
Summarization 

Arthur Bražinskas, Mirella Lapata, Ivan Titov 
EMNLP 2020
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Approach
• Proposed the first few-shot learning framework 

(FewSum) 

• Utilizes a handful of human-written summaries

• Effectively switch an unsupervised model to a 
summarizer 

• Summaries are written formally with more 
informative content
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Annotated data
• Fine-tuning in most cases is performed on 

hundreds of thousands of summaries

• CNN/DM ~ 300k article-summary pairs  

• In our case, we have ~30 annotated products for 
fine-tuning 

• Yet, we show that they can be efficiently utilized in 
a few-shot fashion
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Conditional language model

• Same as in Copycat 

• Conditional language model (CLM) 

• Encoder-generator architecture 

• Training on a large collection of customer reviews 

• Using the leave-one-out objective
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Leave-one-out

65

Very     sturdy   vacuum    …

review 1

…… … …

En
co

de
r S

ta
te

s

…

Great   vacuum      …

review N

… … …

 This  vacuum …

G
enerator States

…
…

…
…

target review

vacuum
hoover
product



Leave-one-out

66

Very     sturdy   vacuum    …

review 1

…… … …

En
co

de
r S

ta
te

s

…

Great   vacuum      …

review N

… … …

 This  vacuum …

G
enerator States

…
…

…
…

target review

Attention vacuum
hoover
product



Leave-one-out

67

Very     sturdy   vacuum    …

review 1

…… … …

En
co

de
r S

ta
te

s

…

Great   vacuum      …

review N

… … …

 This  vacuum …

G
enerator States

…
…

…
…

target review

Attention vacuum
hoover
product



Review properties

• Observation: 

• Some reviews are more like summaries 

• Some are less
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Review 1
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Review 2
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These capsules are a 
natural alternative to 
other over-the-counter 
medications. They are 
easy to swallow and have 
a great taste. Overall, 
great value for money. 

Jon Snow
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other over-the-counter 
medications. They are 
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great value for money. 

Jon Snow
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These capsules are a 
natural alternative to 
other over-the-counter 
medications. They are 
easy to swallow and have 
a great taste. Overall, 
great value for money. 

Jon Snow



Properties

75

review 1

Very     sturdy   vacuum    …
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properties



Properties

• Are like features 

• Used as an additional input to the generator/
decoder 

• Are calculated using an oracle for tuples (source, 
target)
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Property types
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Type Reviews Summaries Implementation

Content 
coverage 

Can contain 
novel content

Only content 
present in 
reviews

ROUGE scores

Writing style Informal Formal Pronoun counts

… … … …



Plug-in network
• At test time, want to generate summaries

• Have access only to source reviews - can’t use the 
oracle

• Might not know what property assignments are 
needed 

• Replace the oracle by a trainable neural network
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Plug-in network

• Using a handful of summaries (~30 data-points) 

• Can train the plug-in network 

• Learns what property values lead to generation of 
summaries
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Recap
• Pre-train

• Large corpus of reviews  

• Leave-one-out objective 

• Oracle computes properties for (source, target) 

• Fine-tune

• Replace the oracle by the plug-in network

• Fine-tune it on a handful of human-written summaries

80



81



Results on Amazon
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Alternative adaptation 
methods
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Alternative adaptation

• Few-shot learning is not the only way to adapt to 
the target dataset  

• Experimented with a number of alternatives
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Amazon results
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ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised learning 21.45 3.15 15.23



Unsupervised learning
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Amazon results
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ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised learning 21.45 3.15 15.23

Unsupervised learning + 
fine-tuning 28.23 6.24 19.64



Unsupervised learning + 
fine-tuning
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Amazon results

89

ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised learning 21.45 3.15 15.23

Unsupervised learning + 
fine-tuning 28.23 6.24 19.64

FewSum 33.56 7.16 21.49



FewSum
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Bottom-line
• FewSum produces summaries that are:  

• Written in the formal writing style

• Informative and sentiment aligned to reviews 

• Better in automatic evaluation (ROUGE) 

• Substantially more preferred by humans
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Open Problems in 
Summarization
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Hallucinations

• Neural generators are prone to hallucinations 
(Falke et al., 2019; Bražinskas et al., 2020; Krysci 
nski et al. 2020) 

• We don’t have well established metrics to capture 
the phenomenon (Wang et al., 2020)
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Multi-document 
summarization

• In multi-document review summarization we might 
need to summary 500+ reviews 

• Computationally infeasible via the standard 
encoder-decoder architecture due to memory 
constraints
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Data scarcity

• Multi-document abstractive summaries are very 
expensive to produce 

• The datasets are very scarce 

• An open field for unsupervised, semi-supervised, 
and few-shot learning approaches
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<END>
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Contact

If any questions, please contact me:  
abrazinskas@ed.ac.uk

97


