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Research topic
• Work on: abstractive text summarization in low-

resource settings

• Also interested in:  

• deep generative models 

• variational inference 

• latent graphical models
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Agenda of this lecture
• Overview of models and methods in text 

summarization

• Overview of two main domains:  

• news articles 

• customer reviews (opinions) 

• Datasets 

• Open problems 
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What is 
Summarization?
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Summarization

‘The act of expressing the most important facts or 
ideas about something or someone in a short and 
clear form.’ - Cambridge dictionary  
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Summarization

‘Importance-driven data reduction’
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Summarization: 
Different Perspectives
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Statistics
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Data summarization
• Say we have some continues data 

• Instead of storing the whole dataset 

• We can store its ‘summary’  

• E.g., sufficient statistics (Wasserman, 2005), 
moments or learned parameters

• Preference/importance is given to parameters that 
capture dynamics of the true model
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Information Theory
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Lossy compression

• Want to compress (+binary represent) i.i.d. discrete 
observations: X ~ F 

• Want reduce the expected length of the binary string 
below H(X) (optimal code) 

• Ok with not being able to decode some symbols
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Lossy compression

• One way to think about lossy compression is that 
we perform binary representation of ‘the most 
important’ symbols or a ‘summary’ of symbols 

• Don’t care about the rest 

• What symbols are important?  

• The ones that are frequent
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The noisy-channel coding 
theorem

Error-free communication 
over a discrete channel is 
achievable by a block code 
encoder-decoder with a rate 
up to the channel capacity.
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The noisy-channel coding 
theorem

• The proof builds on a summarizing subset of block 
codes (typical set) (McKay, 2003) 

•
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Psychology
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Carl Rogers

• American psychologist (1902-1987) 

• The founder of client-centered 
approach

• Emphasizes the individual’s inherent 
drive toward self-actualization
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Empathic paraphrasing

A form of responding empathically to the emotions of 
another person by repeating in other words what 
this person said while focusing on the essence of 
what they feel and what is important to them. 
(Seehause et al., 2012) 

Conceptually similar to abstractive summarization 
(reduce, paraphrase, retain what is important)
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Therapy
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Therapy

• Goal: interpersonal conflict resolution 

• Framed as a dialog game 

• Two persons speak in turns 

• Each needs to summarize what has been said 
before continuing the conversation
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Therapy
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Therapy
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Therapy
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Negotiations
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Schema

• Input data: visual and auditory signal

• Summarizer: (one or multiple) agents  

• What to preserve? what is important to the oner 
person 

• Goal: conflict resolution / negotiations
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Text Summarization
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Why summarization
• The amount of text documents available online is 

enormous 

• Summarization allows for:

• Fast information skimming/consumption

• Faster decision making 

• Downstream utilization (analysis)
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Applications
• Summarize a 100-page book to 10 pages 

• Get an overview of a specific event based on 
recent news articles 

• Condense a wikipedia article to a short paragraph 
based on a query 

• Get contrastive summaries of multiple products 
based on user reviews
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Summarization flavors
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Summarization flavors
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Extract or Abstract?
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Extractive methods

• Well studied across different summarization tasks 

• Usually framed as a tagging problem:

• Given a document (s)  

• Select K summarizing fragments (e.g., sentences) 

• Concatenate to form a summary
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Extractive methods
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Extractive methods

• The central challenge is how to represent 
sentences

• We want powerful semantic representations that 
can be used for accurate binary classification
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Extractive methods

• The tagger is usually a neural encoder that 
produces sentence semantic representations

• Such as a Transformer (Vaswani et al., 2017) 

• Often it’s pre-trained before the start (Liu and 
Lapata, 2019)
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Extractive methods

• Binary predictions: 

• linear transformations of sentence 
representations 

• the sigmoid function
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Extractive data
• In most cases, we don’t have explicit ‘extractive’ datasets 

• Instead, we can utilize abstractive reference 
summaries to produce the training dataset 

• We select sentences from the input document that have 
the maximum ROUGE score to the summary (Nallapati 
et al., 2016)

• These are summarizing sentences 

• Train the extractive summarizer to correctly tag
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Extractive methods
• Pros:

• Easy-to-build models 

• Always factually correct summaries 

• Fast training and inference 

• Less data demanding 

• Cons:

• Incoherent output 

• ‘Jammed’ unimportant details 

• Inability to abstract information 

• Limited vocabulary of words
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Abstractive methods

• Based on the encoder-decoder architecture

• Generate text (Paulus et al., 2017; See et al., 2017; 
Liu et al., 2018)
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Abstractive methods
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Abstractive methods
• Pros:

• Can use a richer vocabulary of words 

• Can rephrase and abstract  

• Can deal with conflicting information

• Cons:

• Require large annotated datasets for training 

• Prone to hallucinations (iPhone vs iPad)
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Evaluation
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ROUGE

• The status-quo metric (Lin, 2004) 

• N-gram overlap between the reference and 
hypothesis summary
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ROUGE-N
• Recall: 

• Precision:  

• F1: 
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ROUGE-N
• Recall: 

• Precision:  

• F1: 
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ROUGE-L

• Based on the longest common subsequence 

• Gaps are allowed 

• The most important sub-metric in summarization 

• Correlated with fluency (harder for extractive 
systems to score highly)
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ROUGE: shortcomings

• Not sensitive to factual mistakes (Falke et al., 
2019; Maynez et al., 2020; Bražinskas et al., 2020) 

• Not sensitive to flipped sentiment (Tay et al., 2019)
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News Summarization: 
Basics
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News
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Summarization of news

Input article
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Summarization of news

Input article

~700 words
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Summarization of news

Input article

~700 words
3.5 min
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Summarization of news

Summarizer

Input article

~700 words
3.5 min
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Summarization of news

Summarizer

Summary
~40 words

Input article

~700 words
3.5 min

82



Summarization of news

Summarizer

12 sec

Summary
~40 words

Input article

~700 words
3.5 min
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News summarization
• Often synonymous to summarization 

• A well established branch 

• Large datasets for supervised training 

• A large body of research (models and theories) 

• Mostly single document
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Datasets

85

Name Multidoc? # pairs #words 
summary Note

CNN/DM No 312k 56.20 Main one; highly extractive 

NYT No 654k 45.54 Highly extractive; behind the 
pay wall

XSum No 230k 23.26 Abstractive; issues with 
content support

Newsroom No 1.3M 26.7 Diverse; noisy; scraped from 
the web

Multi-news Yes 56k 263.66 First large multi-doc



CNN Example
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CNN Example
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CNN Example
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Single document 
summarization

• The machine needs to learn a notion of 
importance 

• For example, to attend important text segments 

• Often can’t take an advantage of redundancies
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Inverted pyramid of 
importance
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LEAD-3

• Can select top-3 sentences and form a summary 
(LEAD-3) 

• For a long time, LEAD-3 was an unbeatable 
baseline across different datasets
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CNN/DM
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Model Type ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 Ext 40.42 17.62 36.67

SummaRunner (Nallapati 
et al., 2016) Abs 37.50 14.50 33.40

SummaRunner (Nallapati 
et al., 2016) Ext 39.60 16.20 35.30



Pointer-generator 
network 

Abigail See, Peter Liu, and Christopher Manning
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Pointer-generator network
• Addresses two main problems: 

• Inaccurate reproduction of details 

• Repetitions 

• Augment the standard attention module

• Introduce a loss for coverage (not covered in 
details)
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Attention mechanism
• Introduced as a way to alleviate the inability of 

seq2seq models to accurately decode target 
sequences from continues representations of 
source sequences (Bahdanau et al., 2014) 

• The decoder gets access to a context vector

• The context vector is a weighted sum of the 
encoder hidden states
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Attention mechanism
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Attention mechanism
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Attention mechanism
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Context vector
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Attention mechanism
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Attention mechanism
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Attention mechanism
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Copy mechanism
• Directly copies words from the source via a pointer 

network (Vinyals et al., 2015) 

• Reuses attention weights 

• Useful for the OOV words problem 

• The final word distribution combines generation 
and ‘copy’ word distributions
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Full model
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Full model
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Full model
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Gate

107



Gate
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Gate
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Gate
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Full model
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Final distribution
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Final distribution

113



Final distribution
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Full model
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CNN/DM
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Model Type ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 Ext 40.42 17.62 36.67

SummaRunner (Nallapati 
et al., 2016) Abs 37.50 14.50 33.40

SummaRunner (Nallapati 
et al., 2016) Ext 39.60 16.20 35.30

PTGEN+COV (See et al., 
2017) Abs 39.53 17.28 36.38



Bottom-Up Abstractive  
Summarization 

Sebastian Gehrmann, Yuntian Deng, Alexander Rush
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BottomUP
• Builds on top of the PGN model  

• Address the problem of poor content selection

• Train a separate content selector of words 

• Hard mask not important words 

• Augment the copy attention distribution at test 
time (inference) to copy only words that are not 
masked
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Models
• Content selector:

• GloVe (Pennington et al., 2014) 

• ELMo (character-aware token embeddings + bi-LSTM layers) 
(Peters et al., 2018) 

• bi-LSTM 

• Linear projection + sigmoid 

• Main model:

• Pointer-generator network (See et al., 2018)
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Two-step procedure
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Two-step procedure
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Two-step procedure
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Augmented copy 
distribution
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Augmented copy 
distribution
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Augmented copy 
distribution
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Augmented copy 
distribution
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Augmented copy 
distribution
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Augmented copy 
distribution
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Augmentation at inference

• This augmentation is performed at inference 

• Show that joint training does not substantially 
improve the performance 
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CNN/DM
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Model Type ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 Ext 40.42 17.62 36.67

SummaRunner (Nallapati 
et al., 2016) Abs 37.50 14.50 33.40

SummaRunner (Nallapati 
et al., 2016) Ext 39.60 16.20 35.30

PTGEN+COV (See et al., 
2017) Abs 39.53 17.28 36.38

BottomUP (Gehrmann et 
al., 2018) Abs 41.22 18.68 38.34



News Summarization: 
Modern Approach
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Two-step paradigm
• Pre-training:

• Large (conditional) language models trained on 
unannotated datasets 

• Unsupervised objectives, such as masked predictions 
(Devlin et al., 2018; Radford et al., 2018; Lewis et al., 2020) 

• Fine-tuning:

• Task specific datasets 

• Supervised learning
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BertSum
• Based on a pre-trained encoder (Liu and Lapata, 

2019) 

• Use a pre-trained BERT encoder (Devlin et al., 
2019) 

• Transformer encoder-decoder architecture 

• The decoder is trained from scratch
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CNN/DM
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Model Type ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 Ext 40.42 17.62 36.67

BottomUP (Gehrmann et 
al., 2018) Abs 41.22 18.68 38.34

\wo BERT (Liu and 
Lapata, 2019) Abs 40.21 17.76 37.09

\w BERT (Liu and Lapata, 
2019) Abs 41.72 19.39 38.76



Pre-trained decoder?

• BertSum has only a pre-trained encoder 

• But the decoder is trained from scratch

• Can we pre-train the decoder too?
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BART

• Encoder-decoder model (Lewis et al., 2020) 

• Also based on Transformers (Vaswani et al., 2017) 

• Uses an unsupervised denoising objective 

• Fine-tuned on end task datasets (incl. 
summarization)
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BART
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CNN/DM
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Model Type ROUGE-1 ROUGE-2 ROUGE-L

LEAD-3 Ext 40.42 17.62 36.67

BottomUP (Gehrmann et 
al., 2018) Abs 41.22 18.68 38.34

BertSum large (Liu and 
Lapata, 2019) Abs 42.13 19.60 39.18

BART* (Lewis et al., 2020) Abs 44.16 21.28 40.90



Opinion 
Summarization
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James Online store
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James Online storeReviews

Summarizer
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Extractive summarizers
• Are commonly used for the task (Ganesa et. al, 2010; 

Angelidis and Lapata, 2018; Isonuma et al., 2019) 

• Mostly unsupervised or weakly-supervised 

• Select summarizing input fragments 

• Concatenate to form a summary 

• Can be incoherent and contained unimportant 
details
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Example
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Example
The stake was cold, and the bread was sour. The 
server forgot about our order.  

The waitress was very rude. The pasta was too dry, 
would not recommend it.  
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Example
The stake was cold, and the bread was sour. The 
server forgot about our order.  

The waitress was very rude. The pasta was too 
dry, would not recommend it. 
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Example
The stake was cold, and the bread was sour. The 
server forgot about our order.  

The waitress was very rude. The pasta was too 
dry, would not recommend it. 

Extractive summary: ?
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Example
The stake was cold, and the bread was sour. The 
server forgot about our order.  

The waitress was very rude. The pasta was too dry, 
would not recommend it. 

Extractive summary: The server forgot about our 
order. The pasta was too dry, would not recommend it. 
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Example
The stake was cold, and the bread was sour. The 
server forgot about our order.  

The waitress was very rude. The pasta was too 
dry, would not recommend it.  

Abstractive summary: Both the service and food 
are terrible.
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Advantages of abstractive 
summarize

• Can use a richer vocabulary of words 

• Can rephrase and abstract 

• Can deal with conflicting information
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Scarce annotated data

• Datasets with reviews-summary pairs are very 
limited 

• The largest one:100 pairs with summaries (Chu 
and Liu, 2019) 

• Large quantities of reviews without summaries 
(millions)
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Opinion and news 
summarization
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News Opinion

Setup Single-document Multi-document

Task Objective facts Subjective opinions

Annotated 
abstractive data

1M+ (Grusky et. al. 
2018)

100 (Chu and Liu, 
2019)



Opinion summarization 
(unannotated data)
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233 million reviews 8 million reviews



Abstractive summarizers
• Next, we’re going to take a look at 3 models for abstractive 

opinion summarization 

• MeanSum (Chu and Liu, 2019)  

• Copycat (Bražinskas et al., 2020) 

• FewSum (Bražinskas et al., 2020) 

• Each alleviates the annotated data scarcity in its own 
way 

• Generate consensus summaries
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MeanSum: A Model for Unsupervised 
Neural Multi-Document Abstractive 

Summarization 
Eric Chu, Peter Liu
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MeanSum
• Recent unsupervised abstractive summarizer of reviews (Chu and 

Liu, 2019) 

• Summary: 

• Represented as sequence of latent categorical variables 

• Differentiable samples via Gumbel-softmax trick (Jang et al., 
2016) 

• Based on multi-tasking:

• Auto-encoding of reviews 

• Semantic similarly of the sampled summary and input reviews
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Reconstruction loss
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<latexit sha1_base64="I0jgnsvWb3nJwxQrKFDKzj7KQao="></latexit>

lrec({x1, x2, ..., xN},�E ,�D) =
NX

i=1

CE(xi,�D(�E(xi)))

<latexit sha1_base64="PhZxLkGv/tKJ4yF1FB4oJi7Qyes=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfU57ldrXt2bAS8TvyA1KNDsV796g5imkilLBTGm63uJDTKiLaeCTSu91LCE0DEZsq6jikhmgmx26xSfOGWAo1i7UhbP1N8TGZHGTGToOiWxI7Po5eJ/Xje10VWQcZWklik6XxSlAtsY54/jAdeMWjFxhFDN3a2Yjogm1Lp4Ki4Ef/HlZdI+q/sXde/uvNa4LuIowxEcwyn4cAkNuIUmtIDCCJ7hFd6QRC/oHX3MW0uomDmEP0CfP7iKjgY=</latexit>xi
<latexit sha1_base64="4L89naRn9UKSbfAV5UNUr5agMdM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FPXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGplqQhtEcqnbETaUM0EblllO20pTnESctqLRzdRvPVFtmBQPdqxomOCBYDEj2Dqp2VVD1rvtlSt+1Z8BLZMgJxXIUe+Vv7p9SdKECks4NqYT+MqGGdaWEU4npW5qqMJkhAe046jACTVhNrt2gk6c0kex1K6ERTP190SGE2PGSeQ6E2yHZtGbiv95ndTGV2HGhEotFWS+KE45shJNX0d9pimxfOwIJpq5WxEZYo2JdQGVXAjB4svLpHlWDS6q/v15pXadx1GEIziGUwjgEmpwB3VoAIFHeIZXePOk9+K9ex/z1oKXzxzCH3ifP1lkjvo=</latexit>

�D

<latexit sha1_base64="f93y/k2hwLkaqSAfepT2093q884=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FETxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUw1oQ0iudTtCBvKmaANyyynbaUpTiJOW9HoZuq3nqg2TIoHO1Y0TPBAsJgRbJ3U7Koh6932yhW/6s+AlkmQkwrkqPfKX92+JGlChSUcG9MJfGXDDGvLCKeTUjc1VGEywgPacVTghJowm107QSdO6aNYalfCopn6eyLDiTHjJHKdCbZDs+hNxf+8TmrjqzBjQqWWCjJfFKccWYmmr6M+05RYPnYEE83crYgMscbEuoBKLoRg8eVl0jyrBhdV//68UrvO4yjCERzDKQRwCTW4gzo0gMAjPMMrvHnSe/HevY95a8HLZw7hD7zPH1rojvs=</latexit>

�E - encoder
- decoder 

- review document



Reconstruction loss
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<latexit sha1_base64="I0jgnsvWb3nJwxQrKFDKzj7KQao="></latexit>

lrec({x1, x2, ..., xN},�E ,�D) =
NX

i=1

CE(xi,�D(�E(xi)))

<latexit sha1_base64="PhZxLkGv/tKJ4yF1FB4oJi7Qyes=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoseiF48VbC20S8mm2TY0yS5JVixL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+UWlldW19o7xZ2dre2d2r7h+0TZxqylo0FrHuhMQwwRVrWW4F6ySaERkK9hCOb3L/4ZFpw2N1bycJCyQZKh5xSmwuPfU57ldrXt2bAS8TvyA1KNDsV796g5imkilLBTGm63uJDTKiLaeCTSu91LCE0DEZsq6jikhmgmx26xSfOGWAo1i7UhbP1N8TGZHGTGToOiWxI7Po5eJ/Xje10VWQcZWklik6XxSlAtsY54/jAdeMWjFxhFDN3a2Yjogm1Lp4Ki4Ef/HlZdI+q/sXde/uvNa4LuIowxEcwyn4cAkNuIUmtIDCCJ7hFd6QRC/oHX3MW0uomDmEP0CfP7iKjgY=</latexit>xi
<latexit sha1_base64="4L89naRn9UKSbfAV5UNUr5agMdM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FPXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGplqQhtEcqnbETaUM0EblllO20pTnESctqLRzdRvPVFtmBQPdqxomOCBYDEj2Dqp2VVD1rvtlSt+1Z8BLZMgJxXIUe+Vv7p9SdKECks4NqYT+MqGGdaWEU4npW5qqMJkhAe046jACTVhNrt2gk6c0kex1K6ERTP190SGE2PGSeQ6E2yHZtGbiv95ndTGV2HGhEotFWS+KE45shJNX0d9pimxfOwIJpq5WxEZYo2JdQGVXAjB4svLpHlWDS6q/v15pXadx1GEIziGUwjgEmpwB3VoAIFHeIZXePOk9+K9ex/z1oKXzxzCH3ifP1lkjvo=</latexit>

�D

<latexit sha1_base64="f93y/k2hwLkaqSAfepT2093q884=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FETxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFldW19o7hZ2tre2d0r7x80jUw1oQ0iudTtCBvKmaANyyynbaUpTiJOW9HoZuq3nqg2TIoHO1Y0TPBAsJgRbJ3U7Koh6932yhW/6s+AlkmQkwrkqPfKX92+JGlChSUcG9MJfGXDDGvLCKeTUjc1VGEywgPacVTghJowm107QSdO6aNYalfCopn6eyLDiTHjJHKdCbZDs+hNxf+8TmrjqzBjQqWWCjJfFKccWYmmr6M+05RYPnYEE83crYgMscbEuoBKLoRg8eVl0jyrBhdV//68UrvO4yjCERzDKQRwCTW4gzo0gMAjPMMrvHnSe/HevY95a8HLZw7hD7zPH1rojvs=</latexit>

�E - encoder
- decoder 

- review document
(use Teacher Forcing)
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Summary sampling
• Decoder       assigns probabilities to words 

• Can obtain a differentiable sample using Gumbel-
softmax re-parametrizaiton trick (Jang et al., 
2016)  

• Can backprop through the sample 

• Notice that we can’t use Teacher Forcing (no gold 
prefixes)
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<latexit sha1_base64="4L89naRn9UKSbfAV5UNUr5agMdM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FPXisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLK6tr6RnGztLW9s7tX3j9oGplqQhtEcqnbETaUM0EblllO20pTnESctqLRzdRvPVFtmBQPdqxomOCBYDEj2Dqp2VVD1rvtlSt+1Z8BLZMgJxXIUe+Vv7p9SdKECks4NqYT+MqGGdaWEU4npW5qqMJkhAe046jACTVhNrt2gk6c0kex1K6ERTP190SGE2PGSeQ6E2yHZtGbiv95ndTGV2HGhEotFWS+KE45shJNX0d9pimxfOwIJpq5WxEZYo2JdQGVXAjB4svLpHlWDS6q/v15pXadx1GEIziGUwjgEmpwB3VoAIFHeIZXePOk9+K9ex/z1oKXzxzCH3ifP1lkjvo=</latexit>

�D



Semantic similarity loss
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<latexit sha1_base64="9Chd/wSlMQAmd+BCAxpPE1yxC1I="></latexit>

s ⇠ �D(
1

N

NX

i=1

�E(xi))
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Semantic similarity loss
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<latexit sha1_base64="9Chd/wSlMQAmd+BCAxpPE1yxC1I=">AAACH3icbVDLSsNAFJ34rPUVdelmsAjtpiTiayMUH+CqVLAPaGKYTCft0JkkzEzEEvInbvwVNy4UEXf9G6ePhbYeGDiccy537vFjRqWyrKGxsLi0vLKaW8uvb2xubZs7uw0ZJQKTOo5YJFo+koTRkNQVVYy0YkEQ9xlp+v2rkd98JELSKLxXg5i4HHVDGlCMlJY881RCR1IOnbhHvfQ6KzqdQCCc2llazbSVcC+lF3b2UJ1EbopPHi2VPLNgla0x4Dyxp6QApqh55rfTiXDCSagwQ1K2bStWboqEopiRLO8kksQI91GXtDUNESfSTcf3ZfBQKx0YREK/UMGx+nsiRVzKAfd1kiPVk7PeSPzPaycqOHdTGsaJIiGeLAoSBlUER2XBDhUEKzbQBGFB9V8h7iHdj9KV5nUJ9uzJ86RxVLZPytbdcaFyOa0jB/bBASgCG5yBCrgFNVAHGDyDV/AOPowX4834NL4m0QVjOrMH/sAY/gCl5qIU</latexit>

s ⇠ �D(
1

N

NX

i=1

�E(xi))

<latexit sha1_base64="vuSspC+GW8m5n+e1ORTooyETa6s=">AAACQ3icbZBPa9swGMbltlvb7F/WHXcRDYMEgrFLR3cJlJbBTiGD5Q+LMyHLciIi2UaSS4Lwd+ulX6C3foFedlgpvQ4mJz5syR4Q/Hie90XSE2acKe15d87O7t6z5/sHh7UXL1+9flN/ezRQaS4J7ZOUp3IUYkU5S2hfM83pKJMUi5DTYTi/LPPhFZWKpck3vczoROBpwmJGsLYWqn/nyCgmimZgFshvwwU6aUPXdUvqBkULdmAQxRIT4xemW8BA5QIZ1vGLH10YIUNSZXezGUOfmwvEWu2KVauF6g3P9VaC2+BX0ACVeqh+G0QpyQVNNOFYqbHvZXpisNSMcFrUglzRDJM5ntKxxQQLqiZm1UEBP1gngnEq7Uk0XLl/bxgslFqK0E4KrGdqMyvN/2XjXMefJoYlWa5pQtYXxTmHOoVloTBikhLNlxYwkcy+FZIZto1pW3vNluBvfnkbBieu/9H1vp42zi+qOg7Ae3AMmsAHZ+AcfAE90AcEXIN78As8ODfOT+fReVqP7jjVzjvwj5zffwB6N65L</latexit>

lsim({x1, x2, ..., xN}) = 1

N

NX

i=1

dcos(�E(xi),�E(s))



Final loss
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<latexit sha1_base64="ecqgS7XodX/4UTSdAF42RDKoa74="></latexit>

lrec({x1, x2, ..., xN},�E ,�D) + lsim({x1, x2, ..., xN},�E ,�D)



Results on Amazon
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Averaged representations?

Why would the averaged review representations 
correspond to a summary and not another review?
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Averaged representations?
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MeanSum

The shirt is very soft and comfortable. I bought 
a size larger than I normally wear and it fits fine. 
I'm 5 '4 and the top is a bit short. I guess I just 
got a good deal. 

178



MeanSum

The shirt is very soft and comfortable. I bought 
a size larger than I normally wear and it fits 
fine. I'm 5 '4 and the top is a bit short. I guess I 
just got a good deal. 

179

problem: superficial, unimportant details



MeanSum

The shirt is very soft and comfortable. I bought 
a size larger than I normally wear and it fits fine. 
I'm 5 '4 and the top is a bit short. I guess I just 
got a good deal. 

180

problem: writing style



No prior?

• Is it possible to guarantee fluency of summaries 
without using a prior? 

• What restricts the decoder from not producing 
degenerate summaries? E.g., a sequence of 
keywords.

181



No prior?
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No prior?
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<latexit sha1_base64="9Chd/wSlMQAmd+BCAxpPE1yxC1I="></latexit>

s ⇠ �D(
1

N

NX

i=1

�E(xi))

No prior distribution restricts what the summary should be

We observed that the model can diverge to generation of not fluent text



MeanSum
• Pros:

• Simple model 

• Does not require annotated summaries 

• Cons:

• Generates summaries that look like reviews 

• Informal writing style 

• Unimportant details 

• Poor content support
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Unsupervised Opinion Summarization 
as Copycat-Review Generation 

Arthur Bražinskas, Mirella Lapata, Ivan Titov 
ACL 2020
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Approach

• Unsupervised latent model (continues variables) 

• Learns latent semantic representations of 
products and individual reviews 

• Generates summaries from ‘summarizing’ latent 
representations 
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Conditional LM

• Formulate a conditional language model (CLM) 

• Predicts a review conditioned on the other reviews 
of a product (leave-one-out) 

• Intuitively similar to the pseudolikelihood estimation 
(Besag, 1975)
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Leave-one-out
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Great Italian 
restaurant with 
authentic food 
and great service!
Recommend! 

review 1

We ordered 
pasta, and it was 
very tasty. Would 
recommend this 
place to anyone.

review 2

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

review 4

This Italian place 
has the best 
spaghetti in the 
world! Strongly 
recommend!

review 3
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Great Italian 
restaurant with 
authentic food 
and great service!
Recommend! 

review 1

We ordered 
pasta, and it was 
very tasty. Would 
recommend this 
place to anyone.

review 2

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

review 4

This Italian place 
has the best 
spaghetti in the 
world! Strongly 
recommend!

review 3
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Novelty reduction

• Model is trained to predict reviews 

• Summaries are different from reviews in content 

• Summaries do not have novel content 

• Control the amount of ‘novelty’ via latent variables
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reviews

riri rNrNr1r1

Great Italian 
restaurant with 

authentic food and 
great service!
Recommend! 

We ordered pasta, 
and it was very 

tasty. Would 
recommend this 
place to anyone.

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

… …

Latent model
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reviews

riri rNrNr1r1

Great Italian 
restaurant with 

authentic food and 
great service!
Recommend! 

We ordered pasta, 
and it was very 

tasty. Would 
recommend this 
place to anyone.

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

… …

Latent model
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review representations

reviews

riri rNrNr1r1

Great Italian 
restaurant with 

authentic food and 
great service!
Recommend! 

We ordered pasta, 
and it was very 

tasty. Would 
recommend this 
place to anyone.

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

… …

z1z1 zNzNzizi
… …

Latent model
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product representation

review representations

reviews

riri rNrNr1r1

Great Italian 
restaurant with 

authentic food and 
great service!
Recommend! 

We ordered pasta, 
and it was very 

tasty. Would 
recommend this 
place to anyone.

We visited this 
place last week. 
The waiters were  
friendly, and the 
food was great!

… …

z1z1 zNzNzizi
… …

cc

Latent model



Model training

Variational Auto-encoders (Kingma and Welling, 
2013) via differentiable sampling
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Summary generation

• Use mean values of the latent variables to limit 
novelty 

• Show that they correspond to summarizing 
reviews
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Summary generation
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1. Infer the mean representation of the product: 

c⇤ = Ec⇠q�(c|r1:N )[c]



Summary generation
1. Infer the mean representation of the product: 

2. Infer the mean representation of the review:

c⇤ = Ec⇠q�(c|r1:N )[c]

<latexit sha1_base64="Vc7Pgiq/yNvyqnEXKI+F6AdS1Kk=">AAACF3icbVDJSgNBEO1xjXGLevTSGISYQ5gRRS9CUASPEcwCmcnQ0+kkTXoWumuEZJy/8OKvePGgiFe9+Td2loMmPih4vFdFVT0vElyBaX4bC4tLyyurmbXs+sbm1nZuZ7emwlhSVqWhCGXDI4oJHrAqcBCsEUlGfE+wute/Gvn1eyYVD4M7GETM8Uk34B1OCWjJzZWGrSK+wLZPoOd5yXXqJkNsK+7jyE1s6DEgaWH4QFvFo7Q5dNxc3iyZY+B5Yk1JHk1RcXNfdjuksc8CoIIo1bTMCJyESOBUsDRrx4pFhPZJlzU1DYjPlJOM/0rxoVbauBNKXQHgsfp7IiG+UgPf052j+9WsNxL/85oxdM6dhAdRDCygk0WdWGAI8Sgk3OaSURADTQiVXN+KaY9IQkFHmdUhWLMvz5Pacck6LZm3J/ny5TSODNpHB6iALHSGyugGVVAVUfSIntErejOejBfj3fiYtC4Y05k99AfG5w8syJ9U</latexit>

z⇤ = Ez⇠p✓(z|c⇤)[z]



Summary generation
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1. Infer the mean representation of the product: 

2. Infer the mean representation of the review:

3. Generate the summarizing review:

r⇤ = argmax
r

p✓(r|z⇤, r1:N )
<latexit sha1_base64="+GAiOOx6NhRbwvQkeedWWI/A6vI=">AAACaHicfZDfahNBFMYn678a/6X1QsSboUGooQ279cJSEIp64Y1awbSFbLqcnZwkQ2dnlzNnpel2n8Kn8VafwlfwKZykK2grHhj48Z3vzMz50sJox2H4oxVcu37j5q2V2+07d+/df9BZXTtweUkKByo3OR2l4NBoiwPWbPCoIIQsNXiYnrxe9A8/Izmd2088L3CUwdTqiVbAXko6W3Tcky9lDDTN4DSpqJZFUsU8Q4Z6g87PjnubkpIq2n1fP2snnW7YD5clr0LUQFc0tZ+strrxOFdlhpaVAeeGUVjwqAJirQzW7bh0WIA6gSkOPVrI0I2q5V61fOqVsZzk5I9luVT/nKggc26epd6ZAc/c5d5C/FdvWPJkZ1RpW5SMVl08NCmN5FwuQpJjTajYzD2AIu3/KtUMCBT7KNvxG/S7EL7z934okIBz6lVNhLXfbRpvLuh/Rm1/Gz35WKPLIV6Fg+1+9Ly//THs7r1qAl4RT8S62BCReCH2xFuxLwZCiS/iq/gmvrd+Bp3gUfD4whq0mpmH4q8K1n8Bs6a6sg==</latexit>

c⇤ = Ec⇠q�(c|r1:N )[c]

<latexit sha1_base64="Vc7Pgiq/yNvyqnEXKI+F6AdS1Kk=">AAACF3icbVDJSgNBEO1xjXGLevTSGISYQ5gRRS9CUASPEcwCmcnQ0+kkTXoWumuEZJy/8OKvePGgiFe9+Td2loMmPih4vFdFVT0vElyBaX4bC4tLyyurmbXs+sbm1nZuZ7emwlhSVqWhCGXDI4oJHrAqcBCsEUlGfE+wute/Gvn1eyYVD4M7GETM8Uk34B1OCWjJzZWGrSK+wLZPoOd5yXXqJkNsK+7jyE1s6DEgaWH4QFvFo7Q5dNxc3iyZY+B5Yk1JHk1RcXNfdjuksc8CoIIo1bTMCJyESOBUsDRrx4pFhPZJlzU1DYjPlJOM/0rxoVbauBNKXQHgsfp7IiG+UgPf052j+9WsNxL/85oxdM6dhAdRDCygk0WdWGAI8Sgk3OaSURADTQiVXN+KaY9IQkFHmdUhWLMvz5Pacck6LZm3J/ny5TSODNpHB6iALHSGyugGVVAVUfSIntErejOejBfj3fiYtC4Y05k99AfG5w8syJ9U</latexit>

z⇤ = Ez⇠p✓(z|c⇤)[z]



Example Summary
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Summary

This restaurant is a hidden gem in

Toronto. The food is delicious, and the

service is impeccable. Highly recommend

for anyone who likes French bistro.

Reviews

We got the steak frites and the chicken

frites both of which were very good ...

Great service ... || I really love this place

... Côte de Boeuf ... A Jewel in the

big city ... || French jewel of Spadina

and Adelaide , Jules ... They are su-

per accommodating ... moules and frites

are delicious ... || Food came with tons

of greens and fries along with my main

course , thumbs uppp ... || Chef has a

very cool and fun attitude ... || Great lit-

tle French Bistro spot ... Go if you want

French bistro food classics ... || Great

place ... the steak frites and it was amaz-

ing ... Best Steak Frites ... in Downtown

Toronto ... || Favourite french spot in the

city ... crème brule for dessert
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Summary

This restaurant is a hidden gem in
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Pitfalls

• The model is never exposed to the actual 
requirements for a good summary

• Can produce fragments that are: 

• Written informally 

• Not all details are important
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Example summary

These are the tights I’ve ever worn. They fit well and 
are comfortable to wear. I wish they were a little bit 
thicker, but I’m sure they will last a long time. 
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Example summary
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Few-Shot Learning for Opinion 
Summarization 

Arthur Bražinskas, Mirella Lapata, Ivan Titov 
EMNLP 2020

217



Approach
• Proposed a few-shot learning framework (FewSum) 

• the first in opinion summarization 

• Utilizes a handful of human-written summaries

• Effectively switch an unsupervised model to a 
summarizer 

• Summaries are written formally with more 
informative content

218



Annotated data
• Fine-tuning in most cases is performed on 

hundreds of thousands of summaries

• CNN/DM ~ 300k article-summary pairs  

• In our case, we have ~30 annotated products for 
fine-tuning 

• Yet, we show that they can be efficiently utilized in 
a few-shot fashion
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Conditional language model

• Same as in Copycat 

• Conditional language model (CLM) 

• Encoder-generator architecture 

• Training on a large collection of customer reviews 

• Using the leave-one-out objective
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Review properties

• Observation: 

• Some reviews are more like summaries 

• Some are less
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Properties
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Property types
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Writing style

• We found that conditioning on pronoun counts is 
a simple yet effective way to control the style of 
writing 

• We categorized pronouns to the 1st, 2nd, 3rd point-
view.  

• One more class if a review has no pronouns 
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1st POV:  
personal experiences

• I bought this as a gift for my husband. 

• I’ve been using Drakkar Noir Balm for over twenty 
years. 

• I purchased these for my son as a kind of a joke.
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2nd POV:  
recommendations

• This is the best product you can buy! 

• You get what you pay for. 

• Please do yourself a favor and avoid this product.
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3rd POV:  
formal writing style

• This is his every work day scent.  

• It’s very hard to buy the balm separately. 

• It smells like Drakkar, but it is hard to find
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No pronouns: 
 aspects/utilization

• Very nice, not too overpowering. 

• This product has no smell what ever. 

• Nice to use for hardwood floors
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Oracle

• Automatically computes property values based 
on: 

• target review 

• source reviews 

•
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Plug-in network

• At test time, want to generate summaries

• Have access only to source reviews - can’t use the 
oracle

• Might not know what property values are needed 

• Replace the oracle by a trainable neural network
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Plug-in network

• Using a handful of summaries (~30 data-points) 

• Can train the plug-in network 

• Learns what property values lead to generation of 
summaries
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Recap
• Pre-train

• Large corpus of reviews  

• Leave-one-out objective 

• Oracle that computes property values 

• Fine-tune

• Replace the oracle by the plug-in network

• Fine-tune it on a handful of human-written summaries
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Results on Amazon
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Alternative adaptation 
methods
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Alternative adaptation

• Few-shot learning is not the only way to adapt to 
the target dataset  

• Experimented with a number of alternatives
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Unsupervised learning + 
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ROUGE-1 ROUGE-2 ROUGE-L

Unsupervised learning 21.45 3.15 15.23

Unsupervised learning + 
fine-tuning 28.23 6.24 19.64

FewSum 33.56 7.16 21.49



FewSum
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Human evaluation

• We asked AMT workers to judge summaries based 
on a number of criteria (fluency, informativeness, 
etc) 

• The results suggest a substantial preference for 
FewSum
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Open Problems in 
Summarization
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Hallucinations

• Neural generators are prone to hallucinations 
(Falke et al., 2019; Bražinskas et al., 2020; Krysci 
nski et al. 2020) 

• We don’t have good metrics to capture the 
phenomenon (Wang et al., 2020)
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Data scarcity

• Multi-document abstractive summaries are very 
expensive to produce 

• The datasets are very scarce 

• An open field for unsupervised, semi-supervised, 
and few-shot learning approaches
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Multi-document 
summarization

• In multi-document review summarization we might 
need to summary 500+ reviews 

• Infeasible due to memory constraints
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Final Thoughts
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Unsupervised learning
• Unsupervised learning (UL) for the end-task is HARD

• UL heavily relies on unsupervised hypotheses:

• distributional hypothesis (word embeddings) 

• Hierarchical word generation process hypothesis (topic 
models) 

• left-right statistical text regularities (LMs) 

• The hypothesis ideally needs to substitute what can’t be 
learned directly from data (no annotated data)
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Unsupervised learning
• In NLP we have a number of powerful classes of 

unsupervised models: 

• word embeddings (Mikolov et al., 2013) 

• topic models (Blei et al., 2003) 

• language models (Devlin et al., 2018; Radford et 
al. 2018)

259



Fine-tuning

These days most success is attained in NLP by 
further fine-tuning these models instead of directly 
using them for the end-task
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Fine-tuning
• Fine-tuning can be performed in the few-shot mode 

yet the problem is overfitting 

• Large models (millions of parameters, e.g., BART 
400M) 

• We observed that in our few-shot framework 
overfitting is alleviated as the plug-in is very 
parameter-compact
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<END>
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Contact

If any questions, contact me:  
abrazinskas@ed.ac.uk
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