Low-Resource Learning

(30 minutes)

Low-Resource learning

How do we **learn models** from small **annotated** datasets?

Modern low-resource learning: 2-steps

- 1) **Pre-training** on large collections of **generic corpora**
- 2) **Fine-tuning** on gold samples (e.g., reviews-summary pairs)

Fine-tuning

- Often performed on thousands of gold samples in other branches of summarization
- For example, single- and multi-document news summarization

News summarization annotated datasets

	#Samples	Multi-document input?
CNN/DailyMail (Hermann et al., 2014)	311,971	No

News summarization annotated datasets

	#Samples	Multi-document input?
CNN/DailyMail (Hermann et al., 2014)	311,971	No
XSum (Narayan et al., 2018)	226,183	No

News summarization annotated datasets

	#Samples	Multi-document input?
CNN/DailyMail (Hermann et al., 2014)	311,971	No
XSum (Narayan et al., 2018)	226,183	No
Multi-News (Fabbri et al., 2019)	56,216	Yes

Annotated data in opinion summarization

- Annotators need to read many reviews to write each summary
- This has lead to only a few datasets with small numbers of summaries

	#Entities	#Summaries	Domain
MeanSum (Chu and Liu, 2019)	200	200	Yelp

	#Entities	#Summaries	Domain
MeanSum (Chu and Liu, 2019)	200	200	Yelp
Copycat (Bražinskas et al., 2020)	60	180	Amazon

	#Entities	#Summaries	Domain
MeanSum (Chu and Liu, 2019)	200	200	Yelp
Copycat (Bražinskas et al., 2020)	60	180	Amazon
FewSum (Bražinskas et al., 2020)	60	180	Amazon

	#Entities	#Summaries	Domain
MeanSum (Chu and Liu, 2019)	200	200	Yelp
Copycat (Bražinskas et al., 2020)	60	180	Amazon
FewSum (Bražinskas et al., 2020)	60	180	Amazon
SpaCe (Angelidis et al., 2021)	50	1,050	TripAdvisor

Challenges

Challenges

- Large neural models tend to rapidly overfit on small datasets
- There is a number of `dimensions' challenging to learn
 - Summary characteristics (e.g., the style of writing)
 - In-domain specifics (product aspects and details)
 - Content structure
 - Personalized summarization (e.g., aspect-based summarization)

Summary characteristics

- Style-of-writing: don't want summaries written in the style of reviews
- **Summary informativeness**: don't want generic content
- ..

Summary characteristics: example

This is my second pair of Reebok running shoes and they are the best running shoes I have ever owned. They are lightweight, comfortable, and provide great support for my feet.

Summary characteristics: example

review writing style and uninformative

This is my second pair of Reebok running shoes and they are the best running shoes I have ever owned. They are lightweight, comfortable, and provide great support for my feet.

Summary characteristics: example

This is my second pair of Reebok running shoes and they are the best running shoes I have ever owned. They are lightweight, comfortable, and provide great support for my feet.

review writing style

In-domain specifics

- Online shops sell a multitude of different products (electronics, health, etc)
- Products can have different specifics:
 - Features / Aspects
 - Utilization / Usage
- It's not possible to learn a wide range of in-domain specifics from a handful of gold samples

Semantic mistakes

- Results in subtle **semantic mistakes** in generated summaries
- Hard to detect using automatic evaluation metrics

Semantic mistakes: example

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Semantic mistakes: example

semantic mistake

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Content structure

- Reviewers often disagree on the pros and cons of a given product
- Summarizers sometimes yield inconsistent and self-contradicting summaries (Oved and Levi, 2021)

Self-contradictions: example

These running shoes are great! They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

Self-contradictions: example

These running shoes are great! They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

Personalized summarization

- Users often have particular preferences when search for products
- These preferences can be used to generate more `targeted' summaries reflecting these preferences

Personalized summarization

Preferences can be expressed as:

- 1) Profile information (explicit entries about interests)
- 2) Aspect queries, e.g., 'resolution', 'battery life', 'price'

. . .

Personalized summarization

This task is also challenging to learn as the model needs to:

- 1) Rely on the query
- 2) Generate the summary **corresponding** to the query

Also, in test time, we can assume that there can be a wide of range of queries

Challenge	Proposed Solution	Main ideas
summary characteristics	FewSum (Bražinskas et al., 2020)	explicitly model summary characteristics

Challenge	Proposed Solution	Main ideas
summary characteristics	FewSum (Bražinskas et al., 2020)	explicitly model summary characteristics
in-domain specifics	AdaSum (Bražinskas et al., 2022)	learn in-domain specifics from customer reviews

Challenge	Proposed Solution	Main ideas
summary characteristics	FewSum (Bražinskas et al., 2020)	explicitly model summary characteristics
in-domain specifics	AdaSum (Bražinskas et al., 2022)	learn in-domain specifics from customer reviews
content structure	PASS (Oved and Levi, 2021)	generate multiple summaries rank summaries by coherence

Challenge	Proposed Solution	Main ideas
summary characteristics	FewSum (Bražinskas et al., 2020)	explicitly model summary characteristics
in-domain specifics	AdaSum (Bražinskas et al., 2022)	learn in-domain specifics from customer reviews
content structure	PASS (Oved and Levi, 2021)	generate multiple summaries rank summaries by coherence
personalization (aspect queries)	AdaQSum (Bražinskas et al., 2022)	automatically create aspect queries learn the task from customer reviews

Challenge: Summary Characteristics

FewSum

- FewSum: few-shot learning model (Bražinskas et al., EMNLP 2020)
- Summary characteristics are modelled explicitly
- Utilizes a handful of human-written summaries for fine-tuning

Architecture

- Similar to Copycat: conditional language model (CLM)
- Encoder-decoder architecture (Transformers without pre-initialization)
- In-domain pre-training on a collection of customer reviews via leave-one-out

Properties

Observation:

- Some reviews are more like summaries
- Some are less

Varys

When I first got diabetes I got this. It has a lot of what we need. But later I have switched to another brand.

Not Informative + informal writing style

When I first got diabetes I got this. It has a lot of what we need. But later I have switched to another brand.

When I first got diabetes I got this. It has a lot of what we need. But later I have switched to another brand.

Jon Snow

These capsules are a natural alternative to other over-the-counter medications. They are easy to swallow and have a great taste. Overall, great value for money.

Jon Snow

These capsules are a natural alternative to other over-the-counter medications. They are easy to swallow and have a great taste. Overall, great value for money.

Jon Snow

These capsules are a natural alternative to other over-the-counter medications. They are easy to swallow and have a great taste. Overall, great value for money.

Properties

- Summary characteristics are modelled in terms of properties
- `Tell' the decoder how `summary-like' a target review is
- Similar to constrained codes (MacKay, 2003)

Properties

Property types

Туре	Reviews	Summaries	Implementation
Information coverage	Uncommon	Common	ROUGE scores

Property types

Туре	Reviews	Summaries	Implementation
Information coverage	Uncommon	Common	ROUGE scores
Writing style	Informal	Formal	Pronoun counts

Property types

Type	Reviews	Summaries	Implementation
Information coverage	Uncommon	Common	ROUGE scores
Writing style	Informal	Formal	Pronoun counts

Oracle

- For training, an oracle function is used
- Automatically computes properties based on:
 - target review
 - source reviews

Oracle

q(target review, source reviews)

Plug-in network

- At test time, want to generate summaries
- Have access only to source reviews
- Can't use the oracle
- Might not know what property assignments are needed to generate summaries
- Replace the oracle by a trainable neural network

Plug-in network

- Using a handful of summaries (< 30 products)
- Fine-tune the **plug-in network**
- Learns what property assignments lead to generation of summaries

Workflow

- 1) Pre-training on customer reviews
- 2) Fine-tuning of the plug-in network on annotated summaries
- 3) Summary generation

Pre-training

- Use a large corpus of reviews
- Leave-one-out objective
- Oracle computes property assignments for target reviews

Fine-tuning

- Replace the oracle by the plug-in network
- It relies only on input/source reviews
- Fine-tune it on a handful of human-written summaries

Summary generation

- Use the **plug-in network** to yield properties
- Generate summaries

Summary example

FewSum

These running shoes are great! They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

Reviews

perfect fit for me ... supply the support that I need ... are flexible and comfortable ... || ... It is very comfortable ... I enjoy wearing them running ... || ... running shoes ... felt great right out of the box ... They run true to size ... || ... my feet and feel like a dream ... Totally light weight ... || ... shoes run small ... fit more true to size ... fit is great! ... supports my arch very well ... || ... They are lightweight... usually wear a size women's 10 ... ordered a 10.5 and the fit is great!

FewSum outputs

- Better capture expected summary characteristics
- Are more preferred by people to alternative models (e.g., Copycat) in terms of
 - Fluency
 - Coherence
 - Non-redundancy
 - Informativeness
 - Sentiment alignment

Challenge: Learning In-domain Specifics

Generic PLMs

- PLMs have millions of parameters (e.g., ~400M in BART)
- Rapidly overfit during the fine-tuning on a handful of gold samples (<100)
- Rarely accustomed to in-domain specifics
 - What products are about (features and details)
 - How products are used by customers
- Result in subtle semantic mistakes in generated summaries after fine-tuning

Semantic mistakes

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Semantic mistakes

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Proposed solution

- Proposed in (Bražinskas et al., NAACL 2022)
- Learning of in-domain specifics from customer reviews
- Store the knowledge to separate modules not part of the pre-trained LM
- Reduces semantic mistakes and results in SOTA results

Approach

PLM fine-tuning

- In this setting, all parameters are optimized
- Leads to rapid overfitting in low-resource settings (He et al., 2021)

- Use adapters (Houlsby et al., 2019)
- Small modules a few percent of PLM's params
- Inserted into Transformer layers
- PLM is frozen while adapters are optimized

$$\hat{h} = f_2(\tanh f_1(h)) + h$$

input hidden state

$$\hat{h} = f_2(\tanh f_1(h)) + h$$

In-domain knowledge

- In order to reduce semantic mistakes, we can learn in-domain specifics
 from customer reviews
- However, further pre-training of a PLM (100% parameters):
 - Computationally and memory inefficient (Mahabadi et al., 2021)
 - Need a separate copy of the model for each domain (e.g., Yelp, Amazon, and IMDB)
 - Catastrophic forgetting (Chen et al., 2020; Yu et al., 2021)

- Use a variant of **leave-one-out** to pre-train adapters
- The PLM remains **frozen** during pre-training

Great Italian restaurant with authentic food and great service! Recommend!

review 1

We ordered pasta, and it was very tasty. Would recommend this place to anyone.

review 2

This Italian place has the best spaghetti in the world! Strongly recommend!

review 3

We visited this place last week. The waiters were friendly, and the food was great!

review 4

- Customer reviews are available in large quantities (millions)
- This allows the model to learn a wide range of in-domains specifics

Fine-tuning

- Fine-tune the **pre-trained adapters** on a **handful gold samples**
- Reviews-summary pairs

Stage 1

Generic pre-training

Summary: without pre-training

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Summary: without pre-training

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Summary: with pre-training

This battery is a great value for the price and works great. It is a good quality battery that can be used to replace a dead battery in an alarm system. The price is great and the quality of the product is good. The shipping was fast and the customer service was excellent.

Summary: with pre-training

This battery is a great value for the price and works great. It is a good quality battery that can be used to replace a dead battery in an alarm system. The price is great and the quality of the product is good. The shipping was fast and the customer service was excellent.

Challenge: Learning Summary Structure

In-coherent summaries

- Reviewers often **disagree** on the pros and cons of a given product
- Summarizers sometimes yield **inconsistent**, **self-contradicting** summaries

Proposed solution

- PASS (Oved and Levi, ACL 2021)
 - Perturbs input reviews to generate multiple summaries
 - Ranks them by coherence
- A separate trained coherence model is used for ranking

Review Collections

r1 1

3 r4

Review Collections

Workflow

Candidate Summary Ranker

- A pairwise coherence classifier
- Trained on **human annotated news summaries** (Fabbri et al., 2021)
- Count how many times each summary was classified as more coherent
- The final summary is selected based on these counts

Summary examples

FewSum

These running shoes are great!
They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

Summary examples

FewSum

These running shoes are great!
They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

Summary examples

FewSum

These running shoes are great!
They fit true to size and are very comfortable to run around in. They are light weight and have great support. They run a little on the narrow side, so make sure to order a half size larger than normal.

PASS

These Reeboks are great for supporting a high arch and are lightweight and comfortable. They come in a variety of colors and sizes, and are ideal for walking or biking. They are also flexible and well made.

Challenge: Summary Personalization

Why is it challenging?

- No annotated dataset with abstractive summaries
- For example, for **aspect-based summarization**

Aspect-based summarization

- Aspect queries can be very diverse
- The model needs to learn to rely on the query
- Would require more annotated samples for learning than for standard summarization

- Proposed in AdaQSum (Bražinskas et al., NAACL 2022)
- Similar to AdaSum, it is based on adapters

- Use an automatic aspect extractor to extract fine-grained aspects from target texts
- Use these aspects to construct queries

The <u>cover</u> offers durable <u>protection</u> for the MacBook, the retractable <u>tilt</u> stands offer <u>protection</u> for the <u>wrists</u>.

The <u>keyboard cover</u> can take some effort to <u>fit</u> properly, and <u>adjustment</u> to its feel may take time.

However, free and fast <u>shipping</u> make up for this one potential issue.

Table 2: Automatically annotated Amazon summary with fine-grained aspect keywords (*underlined italic*).

- Pre-training:
 - Create a synthetic dataset with pseudo summaries from customer reviews
 - Create queries for these pseudo summaries
- Fine-tuning:
 - Create queries from gold summaries
 - Fine-tune on gold samples

Workflow

Workflow

Test time

- Select top K aspect keywords from reviews in test time
- Use it to generate summaries

Query: fits, weak, color, quality

Query: fits, weak, color, quality