Efficient Few-Shot Fine-Tuning for Opinion Summarization

Arthur Bražinskas, Ramesh Nallapati Mohit Bansal, Markus Dreyer

University of Edinburgh Scotland

Introduction

Motivation

- Users often purchase products online (e.g., from Amazon and Google Shopping)
- Seek opinions of other users expressed in reviews
- Use this information for better purchasing decisions
- Some products have hundreds or even thousands of reviews — time consuming to read

Opinion summarization

Opinion summarization

Opinion summarization

Annotated data scarcity

- Annotated datasets for learning are scarce
- Summary writing is expensive many reviews to read
- Most datasets have less than 100 reviews-summary pairs for fine-tuning

Standard fine-tuning

- Standard fine-tuning of PLMs leads to rapid overfitting
- Also PLMs are:
 - Pre-trained on generic text corpora
 - Often not accustomed to in-domain specifics:
 - E.g., product features, aspects, and usage
- Not possible to learn a wide range of product specifics from a handful of summaries

Semantic mistakes

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

Semantic mistakes

This dead on arrival battery is of good quality and holds a charge well. It is easy to install and is a great value for the money. However, it may not hold a charge as advertised due to the plastic case bulging. Overall, this product is highly recommended.

In this work

- Efficient in-domain knowledge injection via selfsupervised pre-training
- Reduce semantic mistakes in generated summaries
- State-of-the-art results in automatic and human evaluation

Approach

In-domain knowledge

- In-domain knowledge can be learned from unannotated customer reviews
- However, further pre-training of a PLM (100% parameters):
 - Computationally and memory inefficient (Mahabadi et al., 2021)
 - Need a separate copy of the model for each domain (e.g., Yelp, Amazon, and IMDB)
 - Catastrophic forgetting (Chen et al., 2020; Yu et al., 2021)

Adapters

- Use adapters (Houlsby et al., 2019)
- Small modules a few percent of PLM's params
- Inserted into Transformer layers
- PLM is frozen while adapters are optimized

Self-supervised pre-training

- We use a self-supervised objective to learn in-domain knowledge
- Predict a review conditioned on the other reviews of a product — leave-one-out (Bražinskas et al., 2020)

Self-supervised pre-training

Great Italian
restaurant with
authentic food
and great service!
Recommend!

review 1

We ordered pasta, and it was very tasty. Would recommend this place to anyone.

review 2

This Italian place has the best spaghetti in the world! Strongly recommend!

review 3

We visited this place last week. The waiters were friendly, and the food was great!

review 4

Self-supervised pre-training

Fine-tuning

- Fine-tune the pre-trained adapters on a handful gold samples
- Reviews-summary pairs

 $\frac{\text{Stage 1}}{\text{Generic pre-training}}$

Generic pre-training

Full model
400M (100%)

f
generic texts
[160 Gb]

Stage 1

We use BART (Lewis et al., 2020)

Experimental Setup

Scope

- Will present results on Amazon
- Results on Yelp can be found in the paper

Data

	Pre-training data (He and McAuley, 2016)	Fine-tuning data (Bražinskas et al., 2020)
Train	70,144	84
Valid	7,900	36
Test	_	60

Baselines

- Copycat (Bražinskas et al., 2020): unsupervised model
- FewSum (Bražinskas et al., 2020): few-shot model
- PASS (Oved and Levi, 2022): SOTA few-shot model

• ...

Results

Conclusions

Main contributions

- Proposed in-domain knowledge injection into adapters via self-supervised pre-training
- Reduce semantic mistakes in summaries
- SOTA results

• ...

In the paper

- Aspect-based model learned from a handful of gold samples after self-supervised pre-training
- Detailed analysis: abstractivness, semantic mistakes, etc
- More automatic and human evaluation results