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Introduction



Word embeddings

- Unsupervised learning
- Distributional hypothesis [Harris, 1954]



Words as vectors
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How to embed polysemous words?
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(a) Kiwi fruit (b) Kiwi bird (c) Kiwi man



Single embeddings per word
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Multiple embeddings per word

How many?



Multiple embeddings per word

- Pre-processing(e.g. clustering [Huang et al., 2012])

- Expert knowledge or assumptions(e.g. sense per
word type [Neelakantan et al., 2015])



Our approach



Words as Gaussian distributions




Context sensitive distributions

Ex.: | saw a small flightless kiwi




Context sensitive distributions

Ex.: I've bought a kiwi and an apple




Background



Skip-gram (SG)

redict redict
2 redict  predict__*

The quick brown fox jumps over the lazy dog

left half window right half window
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Skip-gram (SG)

- Context words directly depend on center words
- Word embeddings are vectors
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Bayesian Skip-gram (BSG)

- Context words depend on ‘meanings’ of center words
- ‘Meaning’ of center words is a latent vector
- Word embeddings are Gaussian distributions
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BSG: Components of interest

i kiwi
.pg(z| iwi) .pg(z|c iwi) po(zlanimal)

pe(z|w) - prior distribution (static embeddings)
pe(z|c,w) - posterior distribution (context sensitive
embeddings)
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BSG: Search for

Log-likelihood is intractable for gradient optimization.

log pa(c|w) = log / Po(2Iw)pa(clz, w)dz
——

likelihood
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BSG: Exact inference

Generation of context sensitive embeddings (inference)
is also intractable.

Po(z, c|w)

zZlw,¢) = ——~"——~
DLH,_l pe(clw)
posterior S——

likelihood
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BSG: Variational inference

To mitigate those issues, we've used variational inference:
variational auto-encoders[Kingma and Welling, 2013]



BSG: Trick 1

Approximate with a neural network(¢) that generates a
Gaussian distribution.

true posterior neural network

——
pg(Z|C, W) ~ C]¢(Z|C, W) = N(Z| I"’d’(cv W)v E¢(C, W))
—_——— ——

approximate posterior neural network



BSG: Trick 2

Maximize the lower-bound instead of the log-likelihood.

reconstruction
7\

c
log pa(cW) = ) " Eq,(zicw) [108 Pa(6i[2)] — Dxe [q5(2Ic, w) || po(z|w)]

e

regularization

j=1

= L(6, ¢lc,w)
—_——

lower-bound



BSG: Intuition behind regularization

red

|
Dicr, g} lIpo (zlkivi)| < Dics |3 lpo(zlkivi)]

Pe (Z|kiWi)

1
ol



BSG: Trick 3

Perform gradient optimization of £(0, ¢|c, w) to find
———

] lower-bound
locally optimal:

- 6 - context agnostic embeddings
- ¢ - context sensitive embeddings(encoder)
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Experiments and Results



- Compared with:

- Skip-gram [Mikolov et al., 2013]
- Word2Gauss [Vilnis and McCallum, 2014]

- Trained on a concatenation of ukWacC and
WaCkypedia corpora

- Approximately 3 billion tokens

21



Evaluation plan

Approximate posteriors qg(z|c, w):
- Lexical substitution
Priors DB(Z‘W) = N(Z‘va EW):

- Semantic word similarity (p,)
- Entailment directionality detection (2,,)

22



Lexical substitution

A way to test context dependent word embeddings.
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Lexical substitution

man

In the forest I saw a flightless kiwi

left context center
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Lexical substitution

e(man)

fle,u)

" /encoding-._

In the forést I saw & ﬂiéﬁtless Kiwi

left context center
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Lexical substitution

2 x°
N compare &9
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" /encoding-._

In the forést I saw & ﬂiéﬁtless Kiwi

left context center
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Lexical substitution

" /encoding-._

In the forést I saw & ﬂiéﬁtless Kiwi

left context center
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Lexical substitution: BSG

(z|man) |f7'uzt |bzrd
9o (2 | c, w

In the forest | saw a flightless kiwi

left context center
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Lexical substitution: Setup

- For W2G and Skip-gram dynamic embeddings f(c, w)
used the best heuristics from [Melamud et al., 2015]

- SemEval-2007 task 10 dataset [McCarthy and Navigli,
2007]
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Lexical substitution: Results

Model | GAP

BSG 0.461
W2G 0.432
SG 0.428

Table 1: Results in terms of generalized average
precision(GAP). The higher, the better.
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Lexical substitution: Conclusion

- Intuition’s support for representation of word senses
- Effective representations
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Lexical substitution: Examples

Excerpts Top 3 Substitutes
At that size it would have a
mass of about the same as
an average galaxy

Few people parallels the
growing poverty of the
masses

conglomeration,
magnitude, bulk

multitude, prole-
tariat, throng

32



Word semantic similarity

« Prior means were used from W2G and BSG.
- BSG is better on 8/12 datasets than other models.

BSG | WG | SG
7.26 | 7.10 | 7.15

Table 2: Results in terms of the sum of Spearman’s correlation
coefficients. The higher, the better.
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Word semantic similarity: Conclusion

Prior means induced by BSG are effective in capturing
semantic properties of words.
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Entailment directionality detection

A way to test whether X are capturing relative generality.
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Entailment directionality detection

(a) Fish A (b) Shark

fish = shark or shark & fish?
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Entailment directionality detection: Baseline

(a) Fish A (b) Shark

count(shark) < count(fish)
shark E fish
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Entailment directionality detection: KLD

(a) Fish A (b) Shark

Can use the asymmetric Kulback-Leibler divergence
function.
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Entailment directionality detection: KLD

fish

shark
O

Dy [shark|fish] ? Dy [fish|shark]
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Entailment directionality detection: KLD

fish

shark
O

Dy, [shark|fish] < D [fish||shark]
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Entailment directionality detection: Results

Model BBDS | BLESS
BSG 7823 | 67.34
W2G 78.41 | 57.50
Baseline | 78.84 | 55.26

Table 3: Accuracy of entailment directionality detection.
Baseline is based on frequency.
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Entailment directionality detection: Conclusion

- BSG priors learn generality information beyond
frequency

- W2G shows to encode frequency into X
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Wrap up




- Introduced a Bayesian extension of the Skip-gram
model

- Static and dynamic embeddings are Gaussian
distributions

- Showed an efficient model’s training procedure
based on the variational auto-encoders framework

- Demonstrated their effectiveness on a number of
benchmarks
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Thank you!

Questions?
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SG: graphical model
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Bayesian Skip-gram (BSG)
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BSG: Variational Inference
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Variational Inference

Dk (g4 (2lc, w)|lpe(z|c, w)]

T log pe(clw)
L(6, ¢|c,w)

A/ v
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Word similarity

Datasets BSG | WG(S) | WG(D) | SG

MC-30 0.71 | 0.69 0.70 0.72
MEN-TR-3k | 0.73 | 0.72 0.71 0.72
MTurk-287 0.70 | 0.70 0.69 0.70
MTurk-771 0.67 | 0.65 0.64 0.65
RG-65 0.70 | 0.69 0.71 0.72
RW-STNFRD | 0.43 | 0.43 0.42 0.44
SIMLEX-999 | 0.35 | 0.34 0.34 0.34
VERB-143 0.32 | 0.38 0.29 0.36
WS-353-ALL | 0.72 | 0.68 0.67 0.69
WS-353-REL | 0.68 | 0.66 0.65 0.65
WS-353-SIM | 0.75 | 0.70 0.68 0.71
YP-130 0.50 | 0.46 0.46 0.45
Sum 7.26 | 7.10 695 715
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KLD

1 det®
Drs (Mo IA) = 5 (b (217 50) + (s = )21 (s — ) — -+ (2 ) )
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