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Introduction



Word embeddings

• Unsupervised learning
• Distributional hypothesis [Harris, 1954]
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Words as vectors
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How to embed polysemous words?

(a) Kiwi fruit (b) Kiwi bird (c) Kiwi man
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Single embeddings per word
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Multiple embeddings per word

How many?
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Multiple embeddings per word

• Pre-processing(e.g. clustering [Huang et al., 2012])
• Expert knowledge or assumptions(e.g. sense per
word type [Neelakantan et al., 2015])
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Our approach



Words as Gaussian distributions
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Context sensitive distributions

Ex.: I saw a small flightless kiwi
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Context sensitive distributions

Ex.: I’ve bought a kiwi and an apple
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Background



Skip-gram (SG)

The  quick  brown  fox  jumps  over  the  lazy  dog
left half window right half window

predict predict
predict predict
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Skip-gram (SG)

• Context words directly depend on center words
• Word embeddings are vectors
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Bayesian Skip-gram (BSG)

• Context words depend on ‘meanings’ of center words
• ‘Meaning’ of center words is a latent vector
• Word embeddings are Gaussian distributions
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BSG: Components of interest

p✓(z|kiwi)p✓(z|kiwi)
p✓(z|animal)p✓(z|animal)

p✓(z|c, kiwi)p✓(z|c, kiwi)

pθ(z|w) - prior distribution (static embeddings)
pθ(z|c,w) - posterior distribution (context sensitive
embeddings)
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BSG: Search for θ

Log-likelihood is intractable for gradient optimization.

logpθ(c|w)︸ ︷︷ ︸
likelihood

= log
∫
pθ(z|w)pθ(c|z,w)dz
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BSG: Exact inference

Generation of context sensitive embeddings (inference)
is also intractable.

pθ(z|w, c)︸ ︷︷ ︸
posterior

=
pθ(z, c|w)
pθ(c|w)︸ ︷︷ ︸
likelihood
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BSG: Variational inference

To mitigate those issues, we’ve used variational inference:
variational auto-encoders[Kingma and Welling, 2013]

16



BSG: Trick 1

Approximate with a neural network(ϕ) that generates a
Gaussian distribution.

true posterior︷ ︸︸ ︷
pθ(z|c,w) ≈ qϕ(z|c,w)︸ ︷︷ ︸

approximate posterior

= N (z|µϕ(c,w)︸ ︷︷ ︸
neural network

,

neural network︷ ︸︸ ︷
Σϕ(c,w))
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BSG: Trick 2

Maximize the lower-bound instead of the log-likelihood.

logpθ(c|w) ≥

reconstruction︷ ︸︸ ︷
C∑
j=1

Eqϕ(z|c,w) [logpθ(cj|z)]−DKL [qϕ(z|c,w)∥pθ(z|w)]︸ ︷︷ ︸
regularization

= L(θ,ϕ|c,w)︸ ︷︷ ︸
lower-bound
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BSG: Intuition behind regularization
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BSG: Trick 3

Perform gradient optimization of L(θ,ϕ|c,w)︸ ︷︷ ︸
lower-bound

to find

locally optimal:

• θ - context agnostic embeddings
• ϕ - context sensitive embeddings(encoder)
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Experiments and Results



Setup

• Compared with:
• Skip-gram [Mikolov et al., 2013]
• Word2Gauss [Vilnis and McCallum, 2014]

• Trained on a concatenation of ukWaC and
WaCkypedia corpora

• Approximately 3 billion tokens
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Evaluation plan

Approximate posteriors qϕ(z|c,w):

• Lexical substitution

Priors pθ(z|w) = N (z|µw,Σw):

• Semantic word similarity (µw)
• Entailment directionality detection (Σw)
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Lexical substitution

A way to test context dependent word embeddings.
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Lexical substitution

In the forest I saw a flightless kiwiIn the forest I saw a flightless kiwi

left context center

manman fruitfruit birdbird
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Lexical substitution

In the forest I saw a flightless kiwiIn the forest I saw a flightless kiwi

left context center

f(c, w)f(c, w)

e(bird)e(bird)e(fruit)e(fruit)e(man)e(man)

encoding
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Lexical substitution
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Lexical substitution
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Lexical substitution: BSG

In the forest I saw a flightless kiwi
left context center

q�(z|c, w)q�(z|c, w)

p✓(z|man)p✓(z|man) p✓(z|fruit)p✓(z|fruit) p✓(z|bird)p✓(z|bird)

KLD KLD
KLD
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Lexical substitution: Setup

• For W2G and Skip-gram dynamic embeddings f(c,w)
used the best heuristics from [Melamud et al., 2015]

• SemEval-2007 task 10 dataset [McCarthy and Navigli,
2007]
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Lexical substitution: Results

Model GAP
BSG 0.461
W2G 0.432
SG 0.428

Table 1: Results in terms of generalized average
precision(GAP). The higher, the better.
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Lexical substitution: Conclusion

• Intuition’s support for representation of word senses
• Effective representations
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Lexical substitution: Examples

Excerpts Top 3 Substitutes
At that size it would have a
mass of about the same as
an average galaxy

conglomeration,
magnitude, bulk

Few people parallels the
growing poverty of the
masses

multitude, prole-
tariat, throng
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Word semantic similarity

• Prior means were used from W2G and BSG.
• BSG is better on 8/12 datasets than other models.

BSG WG SG
7.26 7.10 7.15

Table 2: Results in terms of the sum of Spearman’s correlation
coefficients. The higher, the better.
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Word semantic similarity: Conclusion

Prior means induced by BSG are effective in capturing
semantic properties of words.
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Entailment directionality detection

A way to test whether Σ are capturing relative generality.
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Entailment directionality detection

(a) Fish (b) Shark

fish ⊨ shark or shark ⊨ fish?
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Entailment directionality detection: Baseline

(a) Fish (b) Shark

count(shark) < count(fish)
shark ⊨⊨⊨ fish
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Entailment directionality detection: KLD

(a) Fish (b) Shark

Can use the asymmetric Kulback-Leibler divergence
function.
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Entailment directionality detection: KLD

sharkshark

fishfish

DKL [shark∥fish] ? DKL [fish∥shark]
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Entailment directionality detection: KLD

sharkshark

fishfish

DKL [shark∥fish] < DKL [fish∥shark]
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Entailment directionality detection: Results

Model BBDS BLESS
BSG 78.23 67.34
W2G 78.41 57.50
Baseline 78.84 55.26

Table 3: Accuracy of entailment directionality detection.
Baseline is based on frequency.
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Entailment directionality detection: Conclusion

• BSG priors learn generality information beyond
frequency

• W2G shows to encode frequency into Σ
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Wrap up



Summary

• Introduced a Bayesian extension of the Skip-gram
model

• Static and dynamic embeddings are Gaussian
distributions

• Showed an efficient model’s training procedure
based on the variational auto-encoders framework

• Demonstrated their effectiveness on a number of
benchmarks
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Special thanks to
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Thank you!

Questions?
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SG: graphical model
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Bayesian Skip-gram (BSG)
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BSG: Variational Inference

⌦⌦
q�(z|c, w)q�(z|c, w)

p✓(z|c, w)p✓(z|c, w)
DKLDKL distancedistance
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Variational Inference

log p✓(c|w)log p✓(c|w)

L(✓,�|c, w)L(✓,�|c, w)

DKL [q�(z|c, w)kp✓(z|c, w)]DKL [q�(z|c, w)kp✓(z|c, w)]
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Word similarity

Datasets BSG WG(S) WG(D) SG
MC-30 0.71 0.69 0.70 0.72
MEN-TR-3k 0.73 0.72 0.71 0.72
MTurk-287 0.70 0.70 0.69 0.70
MTurk-771 0.67 0.65 0.64 0.65
RG-65 0.70 0.69 0.71 0.72
RW-STNFRD 0.43 0.43 0.42 0.44
SIMLEX-999 0.35 0.34 0.34 0.34
VERB-143 0.32 0.38 0.29 0.36
WS-353-ALL 0.72 0.68 0.67 0.69
WS-353-REL 0.68 0.66 0.65 0.65
WS-353-SIM 0.75 0.70 0.68 0.71
YP-130 0.50 0.46 0.46 0.45
Sum 7.26 7.10 6.95 7.15

Table 4: Results are computed in terms of Spearman’s
correlation coefficient. The higher, the better.
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