Embedding Words as Distributions with a Bayesian Skip-gram Model

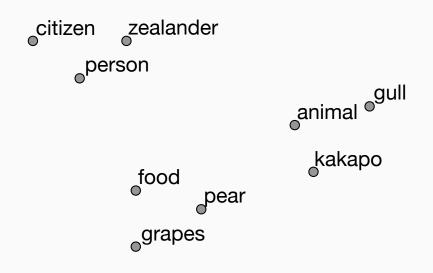
Arthur Bražinskas^{1,2}Serhii Havrylov²Ivan Titov^{1,2}COLING 2018, Santa-Fe, New Mexico

¹ILLC, University of Amsterdam ²ILCC, School of Informatics, University of Edinburgh

Introduction

- Unsupervised learning
- Distributional hypothesis [Harris, 1954]

Words as vectors



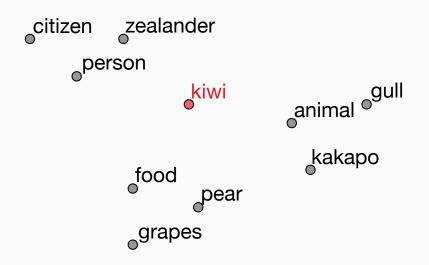
How to embed polysemous words?

(a) Kiwi fruit

(b) Kiwi bird

(c) Kiwi man

Single embeddings per word



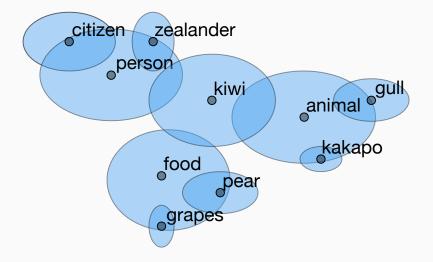
Multiple embeddings per word

How many?

- Pre-processing(e.g. clustering [Huang et al., 2012])
- Expert knowledge or assumptions(e.g. sense per word type [Neelakantan et al., 2015])

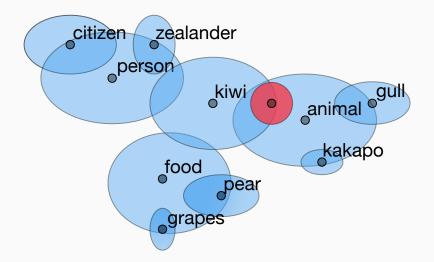
Our approach

Words as Gaussian distributions



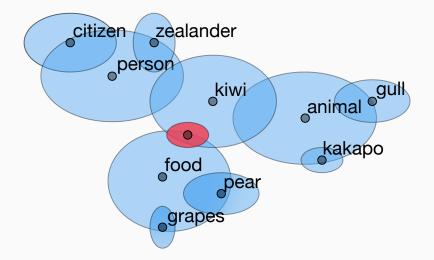
Context sensitive distributions

Ex.: I saw a small flightless kiwi



Context sensitive distributions

Ex.: I've bought a **kiwi** and an apple



Background

Skip-gram (SG)

The quick brown fox jumps over the lazy dog

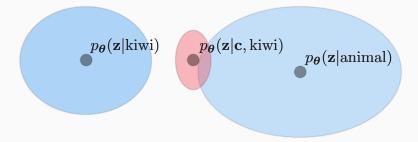
left half window

right half window

- Context words directly depend on center words
- Word embeddings are vectors

- Context words depend on 'meanings' of center words
- 'Meaning' of center words is a latent vector
- Word embeddings are Gaussian distributions

BSG: Components of interest



 $p_{\theta}(\mathbf{z}|w)$ - prior distribution (static embeddings) $p_{\theta}(\mathbf{z}|\mathbf{c}, w)$ - posterior distribution (context sensitive embeddings)

Log-likelihood is **intractable** for gradient optimization.

$$\log \underbrace{p_{\theta}(\mathbf{c}|w)}_{\text{likelihood}} = \log \int p_{\theta}(\mathbf{z}|w) p_{\theta}(\mathbf{c}|\mathbf{z},w) d\mathbf{z}$$

Generation of context sensitive embeddings (inference) is also **intractable**.

$$\underbrace{p_{\theta}(\mathbf{z}|w, \mathbf{c})}_{\text{posterior}} = \frac{p_{\theta}(\mathbf{z}, \mathbf{c}|w)}{\underbrace{p_{\theta}(\mathbf{c}|w)}_{\text{likelihood}}}$$

To mitigate those issues, we've used variational inference: **variational auto-encoders**[Kingma and Welling, 2013]

Approximate with a **neural network**(ϕ) that generates a Gaussian distribution.

$$\underbrace{\mathcal{P}_{\theta}(\mathbf{Z}|\mathbf{C}, \mathbf{W})}_{\text{approximate posterior}} \approx \underbrace{\mathcal{Q}_{\phi}(\mathbf{Z}|\mathbf{C}, \mathbf{W})}_{\text{neural network}} = \mathcal{N}(\mathbf{Z}|\underbrace{\boldsymbol{\mu}_{\phi}(\mathbf{C}, \mathbf{W})}_{\text{neural network}}, \underbrace{\boldsymbol{\Sigma}_{\phi}(\mathbf{C}, \mathbf{W})}_{\mathbf{C}\phi(\mathbf{C}, \mathbf{W})})$$

Maximize the lower-bound instead of the log-likelihood.

$$\log p_{\theta}(\mathbf{c}|w) \geq \underbrace{\sum_{j=1}^{C} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{c},w)} \left[\log p_{\theta}(c_{j}|\mathbf{z})\right]}_{\text{log } p_{\theta}(\mathbf{c}_{j}|\mathbf{z})} - \underbrace{\mathbb{D}_{KL} \left[q_{\phi}(\mathbf{z}|\mathbf{c},w) \| p_{\theta}(\mathbf{z}|w)\right]}_{\text{regularization}}$$
$$= \underbrace{\mathcal{L}(\theta, \phi|\mathbf{c}, w)}_{\text{lower-bound}}$$

BSG: Intuition behind regularization

 $\begin{array}{c|c} \operatorname{green} & \operatorname{red} \\ \downarrow \\ \mathbb{D}_{KL} \left[q_{\phi}^{1} \| p_{\theta}(\mathbf{z} | \operatorname{kiwi}) \right] < \mathbb{D}_{KL} \left[q_{\phi}^{2} \| p_{\theta}(\mathbf{z} | \operatorname{kiwi}) \right] \end{array}$ $p_{\theta}(\mathbf{z}|\text{kiwi})$

Perform gradient optimization of $\underbrace{\mathcal{L}(\theta, \phi | \mathbf{c}, w)}_{\text{lower-bound}}$ to find locally optimal:

- \cdot heta context agnostic embeddings
- $\cdot \phi$ context sensitive embeddings(encoder)

Experiments and Results

- Compared with:
 - Skip-gram [Mikolov et al., 2013]
 - Word2Gauss [Vilnis and McCallum, 2014]
- Trained on a concatenation of ukWaC and WaCkypedia corpora
- Approximately 3 billion tokens

Approximate posteriors $q_{\phi}(\mathbf{z}|\mathbf{c}, w)$:

Lexical substitution

Priors $p_{\theta}(\mathbf{z}|w) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w})$:

- \cdot Semantic word similarity ($\mu_{\scriptscriptstyle W}$)
- Entailment directionality detection $(\Sigma_{\scriptscriptstyle W})$

A way to test context dependent word embeddings.

man

 fruit

bird

In the forest I saw a flightless kiwi

left context

center

e(man)

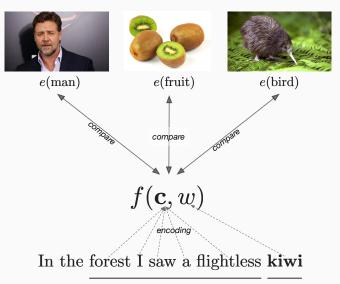
e(fruit)

e(bird)

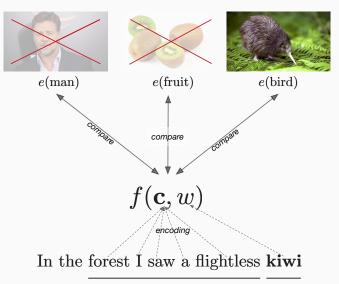
 $f(\mathbf{c}, w)$ In the forest I saw a flightless **kiwi**

left context

center

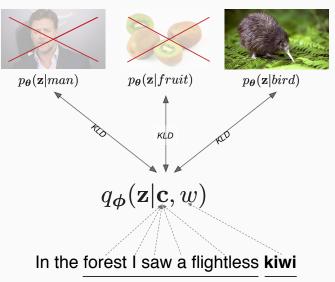


left context



left context

Lexical substitution: BSG



left context

- For W2G and Skip-gram dynamic embeddings f(c, w) used the best heuristics from [Melamud et al., 2015]
- SemEval-2007 task 10 dataset [McCarthy and Navigli, 2007]

Model	GAP
BSG	0.461
W2G	0.432
SG	0.428

Table 1: Results in terms of generalized averageprecision(GAP). The higher, the better.

- Intuition's support for representation of word senses
- Effective representations

Excerpts	Top 3 Substitutes	
At that size it would have a	conglomeration, magnitude, bulk	
mass of about the same as		
an average galaxy		
Few people parallels the growing poverty of the masses	multitude, prole- tariat, throng	

Word semantic similarity

- Prior means were used from W2G and BSG.
- BSG is better on 8/12 datasets than other models.

BSG	WG	SG	
7.26	7.10	7.15	

Table 2: Results in terms of the sum of Spearman's correlationcoefficients. The higher, the better.

Prior means induced by BSG are effective in capturing semantic properties of words.

Entailment directionality detection

A way to test whether Σ are capturing relative generality.

Entailment directionality detection

(a) Fish

(b) Shark

fish \models shark or shark \models fish?

Entailment directionality detection: Baseline

(a) Fish

(b) Shark

count(shark) < count(fish) shark ⊨ fish

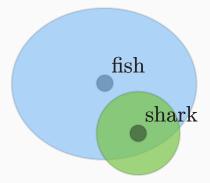
Entailment directionality detection: KLD

(a) Fish

(b) Shark

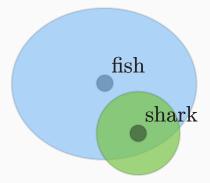
Can use the **asymmetric Kulback-Leibler divergence** function.

Entailment directionality detection: KLD



\mathbb{D}_{KL} [shark||fish] ? \mathbb{D}_{KL} [fish||shark]

Entailment directionality detection: KLD



\mathbb{D}_{KL} [shark||fish] < \mathbb{D}_{KL} [fish||shark]

Entailment directionality detection: Results

Model	BBDS	BLESS
BSG	78.23	67.34
W2G	78.41	57.50
Baseline	78.84	55.26

Table 3: Accuracy of entailment directionality detection.Baseline is based on frequency.

Entailment directionality detection: Conclusion

- BSG priors learn **generality** information beyond frequency
- \cdot W2G shows to encode frequency into Σ

Wrap up

Summary

- Introduced a Bayesian extension of the Skip-gram model
- Static and dynamic embeddings are Gaussian distributions
- Showed an efficient model's training procedure based on the variational auto-encoders framework
- Demonstrated their effectiveness on a number of benchmarks

Special thanks to

Thank you!

Questions?

References

Zellig S Harris. Distributional structure. *Word*, 10(2-3): 146–162, 1954.

- Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pages 873–882. Association for Computational Linguistics, 2012.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- Diana McCarthy and Roberto Navigli. Semeval-2007 task 10: English lexical substitution task. In *Proceedings of the 4th International Workshop on Semantic*

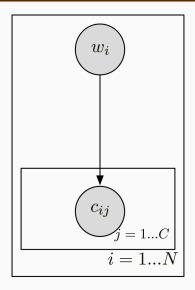
Evaluations, pages 48–53. Association for Computational Linguistics, 2007.

- Oren Melamud, Omer Levy, and Ido Dagan. A simple word embedding model for lexical substitution. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, pages 1–7, 2015.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119, 2013.
- Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. Efficient non-parametric

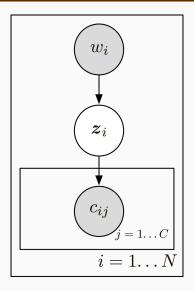
estimation of multiple embeddings per word in vector space. *arXiv preprint arXiv:1504.06654*, 2015.

Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding. *arXiv preprint arXiv:1412.6623*, 2014.

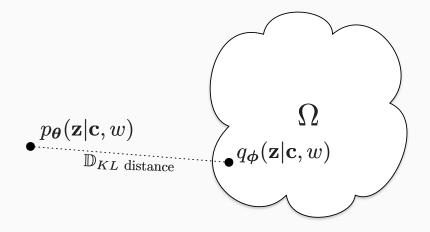
SG: graphical model



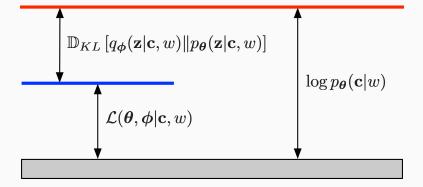
Bayesian Skip-gram (BSG)



BSG: Variational Inference



Variational Inference



Word similarity

Datasets	BSG	WG(S)	WG(D)	SG
MC-30	0.71	0.69	0.70	0.72
MEN-TR-3k	0.73	0.72	0.71	0.72
MTurk-287	0.70	0.70	0.69	0.70
MTurk-771	0.67	0.65	0.64	0.65
RG-65	0.70	0.69	0.71	0.72
RW-STNFRD	0.43	0.43	0.42	0.44
SIMLEX-999	0.35	0.34	0.34	0.34
VERB-143	0.32	0.38	0.29	0.36
WS-353-ALL	0.72	0.68	0.67	0.69
WS-353-REL	0.68	0.66	0.65	0.65
WS-353-SIM	0.75	0.70	0.68	0.71
YP-130	0.50	0.46	0.46	0.45
Sum	7.26	7.10	6.95	7.15

50

$$D_{ ext{KL}}(\mathcal{N}_0 \| \mathcal{N}_1) = rac{1}{2} \left(ext{tr} \left(\Sigma_1^{-1} \Sigma_0
ight) + (\mu_1 - \mu_0)^{ ext{T}} \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \ln \! \left(rac{\det \Sigma_1}{\det \Sigma_0}
ight)
ight)$$